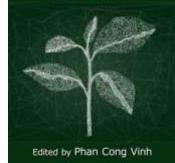
A lesson for « eco-inspired » agro-forest from small farmers over the world

Geneviève Michon, IRD


Biomim' review Galerie d'exemples d'innovations bio-inspirées.

Bio- (Eco-) inspiration

Nature-Inspired Networking

Theory and Applications

CBC Press

Humanité bios entre approche Internet de la construction de la constru

Et perteñañ at aver

Natural « bio-ecological » norm: trees and complex forests

Natural « bio-ecological » norm: trees and complex forests

« Modern » bio-cultural norm: herbs and simplified ecosystem?

Where are we in agroforestry?

- Still far from Nature
- Coming back: learn from Nature
- Long way...?

Modern (scientific) agroforestry design

Eco-inspiration?

Trees and forests principles as a source of inspiration in agriculture

Trees vs. herb, forests vs. fields: what does it imply?

- Long term vs. short term
- Complexity vs. simplification
- Mutualism and cooperation vs. competition
- Durability and reproduction vs. productivity

→ Forests (learn from forest patterns, forms and dynamics

Learn from what exists all over the world

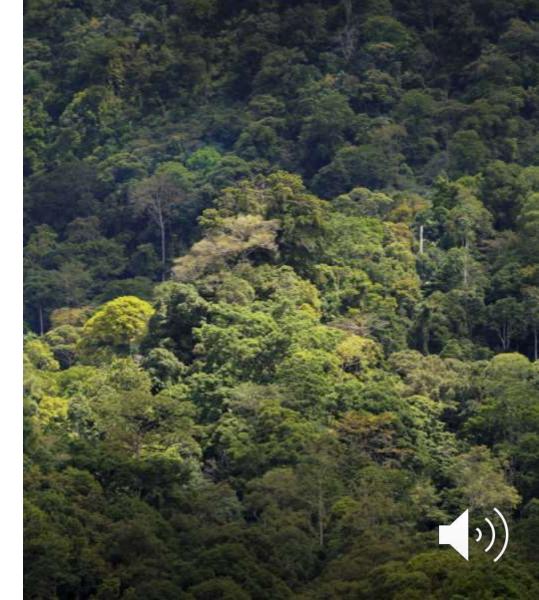
Existing agroforests (learn from farmers' knowledge in managing trees)

We do not start from scratch

« Traditional » agri-cultural norm, France : a mix of herbs and trees

We do not start from scratch

« Traditional » agri-cultural norm, Morocco: a mix of herbs and trees

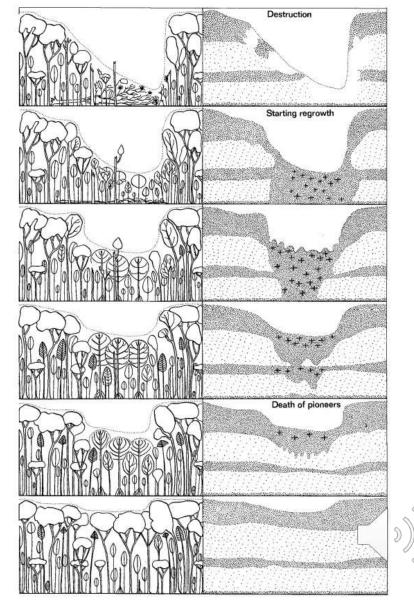

We do not start from scratch

« Traditional » agri-cultural norm, Indonesia: forest gardens, agroforests

Forest structure, functioning and dynamics : basic principles

Forest structure

- Diversity and complementarity
 - Species
 - Plant forms Plant ecologies
 - Plant life cycles
- → Cooperation, mutualism: mycorrhizae and beyond


Forest structure

- Diversity and complementarity
 - Species
 - Plant forms
 Plant ecologies
 - Plant life cycles
- → Cooperation, mutualism: mycorrhizae and beyond
- Complex 3D architecture

Continuous movement: Sylvigenesis

- Chablis
- Pioneer (healing species)
- Post-pioneers
- → Cycling and recycling
- → Continuous change

Forest structure, functioning and dynamics : basic principles

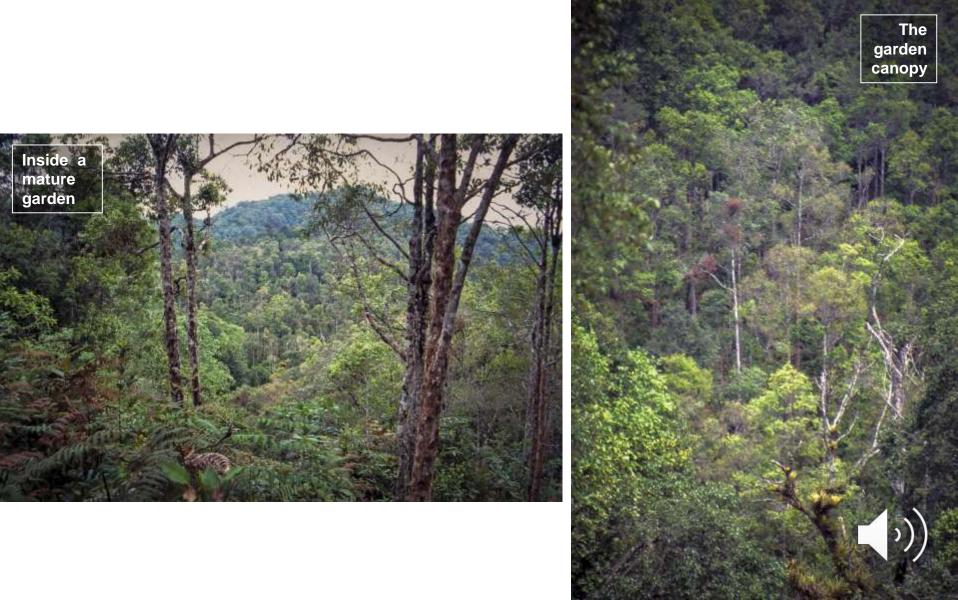
- Diversity
- Complementarity
- Adaptation
- Cooperation, mutialism
- Continuous cycling and recycling

Implications for agroforestry design and management

Agroforests in Indonesia: complex forest gardens

Agroforests in Indonesia: establishment

Progressive replacement (fruit gardens in Borneo, benzoin agroforests in Sumatra)



3/ Selective clearing of vegetation (undregrowth + canopy) around growing benzoin trees

5/ The ageing (agro)forest is like a natural forest with remnant benzoin trees. It can be used for another cycle after a long resting period

Agroforests in Indonesia : establishment

- Progressive replacement (fruit gardens in Borneo, benzoin agroforests in Sumatra)
- Start from srcratch (damar agroforests in Sumatra, rattan and rubber agroforests in Borneo)
 - The « ladang strategy »: creating an environment for designing and planting (agro)forest, following sylvigenesis model

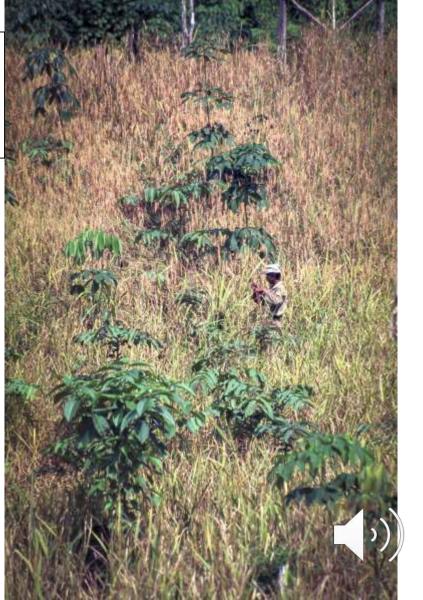
Slash-and-burn agriculture

3/ Harvesting

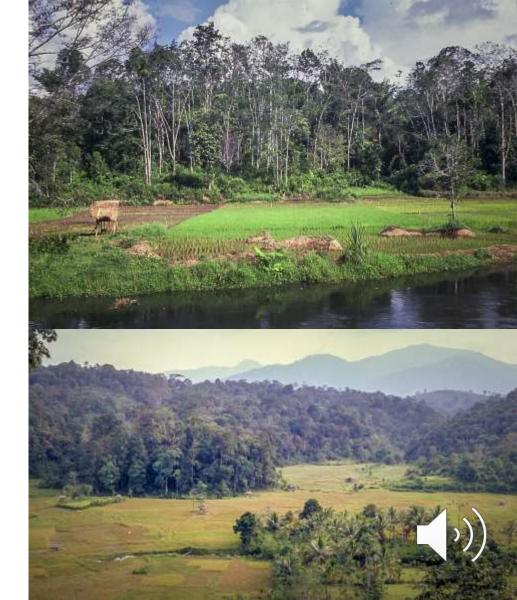
March 1

4/ Fallowing

1/ Clearing and burning



Young trees growing with successive rice crops



Agroforests in Indonesia: establishment

• More complex schemes: damar agroforests in Sumatra

Year 1: Coffee seedlings + shade trees in swidden rice

Year 2 to 4: Coffee seedlings growing with successive rice crops Year 4: Harvesting coffee + introducing damar seedlings in swidden coffee

Agroforests in Indonesia: establishment

• More complex schemes: damar agroforests in Sumatra

Year 1: Coffee seedlings + shade trees in swidden rice Year 2 to 4: Coffee seedlings growing with successive rice crops

Year 4: Harvesting coffee + introducing damar seedlings in swidden coffee Year 4 to 15: young damar trees growing in swidden coffee

Agroforests in Indonesia: establishment

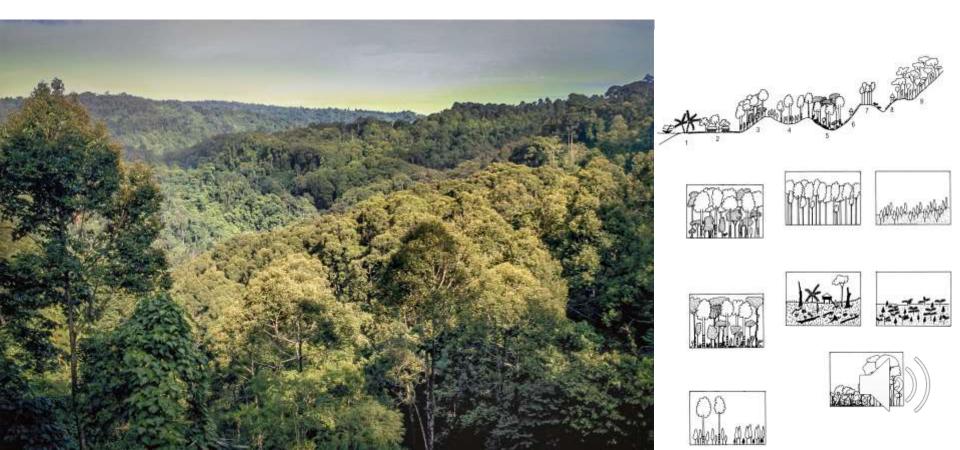
• More complex schemes: damar agroforests in Sumatra

Year 1: Coffee seedlings + shade trees in swidden rice Year 2 to 4: Coffee seedlings growing with successive rice crops Year 4: Harvesting coffee + introducing damar seedlings in swidden coffee

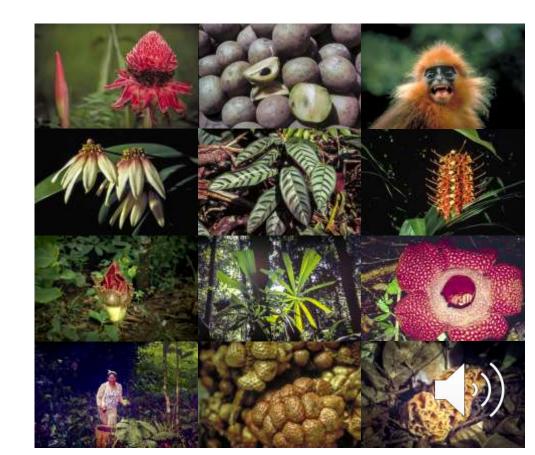
Year 4 to 15: young damar trees growing in swidden coffee

Year 15 to 25: damar trees growing in fallow, selective clearing and begining of resin harvesting

Agroforests in Indonesia: forest principles


• Mature phase: forest complexity (vertical: stand structure + time)

Agroforests in Indonesia: forest principles

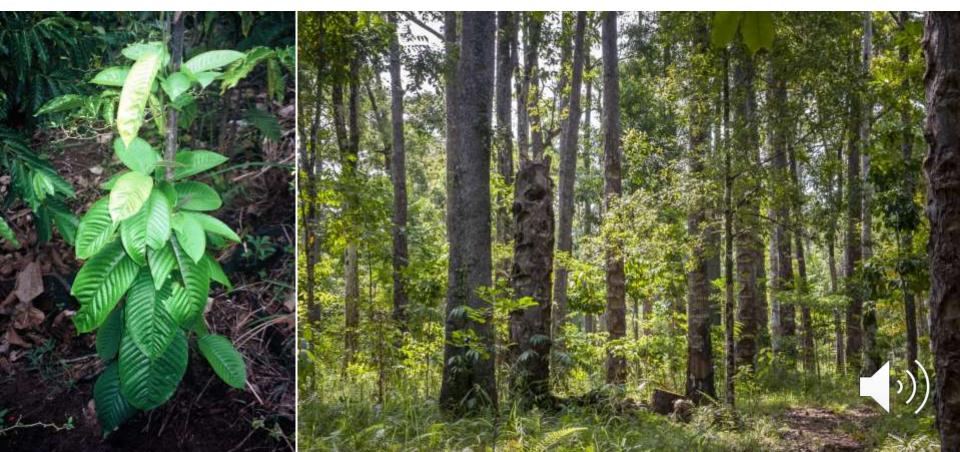

• Mature phase: forest complexity (horizontal: various facets)

Agroforests in Indonesia: forest principles

• Mature phase: forest complexity (biodiversity)

Agroforests in Indonesia: Regeneration

• New cycle

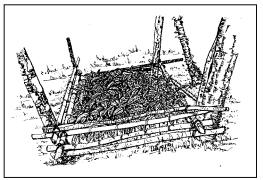

Agroforests Indonesia: Regeneration

• Progressive healing of canopy gaps

Agroforests Indonesia: Regeneration

• Protecting natural regeneration, anticipating,

Agroforests in Indonesia: simple, low-cost techniques


• Establishment phase

Collecting seeds in forest or old gardens

A damar nursery, with forest soil: seedlings can survive 4 years, from a fruiting season to another

> Technically simple, but « ecological », nursery techniques

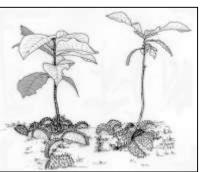
Collecting/transplanting seedlings

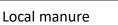
In situ plantation

Agroforests in Indonesia: simple, low-cost techniques

• Mature phase

« Human » dissemination


Natural regeneration


Enrichment planting

Air layering

Agroforests in Indonesia: building (on) forest diversity and complexity

« Forest preference » (= « Forest model »)

Diversity of plant forms, plant cycles, plant ecology = diversity of products and functions

Diversity of animals = diversity of pollinators, dispersers, predators, game

Cooperation, mutualism, tolerance = no « weeds », no « pests »

Cycles and recycling = no chemicals, minimum work

Not fully replicable models, but sources of inspiration

- Different times, different conditions different localities, different ecologies
- No universal rule, no global « recipe »
- But general principles:
 - « re-invent our own systems building upon forces that guide local ecosystems and found their resilience and sustainability »
 - « do with » instead of « do against », « let the nature work as far as possible »
- Observation, intuition
- Recovery of « forest knowledge »

Recovering forest knowledge

- Not only plants, but ecosystems
- Not only trees, but diverse life forms
- Not all the same plants (sun-loving, shade tolerant, short cycles, longlasting)
- 4D design (horizontal + vertical, over time)
- Diversity
- Associations (plants/animals/insects) : cooperation, mutualism
- The healing power of plants for forest ecosystem

 no « invasive species », but companion plants
- No « forest climax », but cycles → Tolerate perturbations and movement, cultivate impermanence, create moving forest mosaics in space and time

A word of conclusion

- Forest as a source of inspiration and design (eco-inspiration)
- Production: accompanying (mimicing) natural processes, structures, functions
- → Behaviour: forest as a community of diverse living organisms interacting through mutualism, exchanges, complementarity, anticipation,

Thank you for your attention

ົ